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Overview 
One of the most popular brain-computer interface (BCI) paradigms is the recognition of motor 

imagery tasks using electroencephalograph signals (EEG). One of the recently presented 

convolutional neural networks (CNNs) specifically designed to process EEG data is the 

EEGNet, that gets good performance across different BCI paradigms while being compact 

enough to explore its implementation on edge devices. In this work, an EEGNet-based 

architecture has been implemented on the FPGA of the Xilinx Zynq 7010 system on-chip 

(SoC), the core of the Red Pitaya STEMLab 125-10. To achieve this, two optimization 

strategies have been explored: some data reduction techniques to control the size of the 

model, and the fixed-point representation of the network. 

Introduction 
Brain-computer interfaces (BCIs) aim to enable direct communication between humans and 

computers by reading and identifying signals from the brain and acting on them. Their main 

inspiration comes from the medical field, but they also have applicability in entertainment and 

gaming systems, home automation or human enhancement. 

Among all the BCI paradigms proposed throughout the field, we decided to focus on motor 

imagery (MI), a paradigm that consists of recognizing signals related to imagined 

movements. The commonly used brain-related signals for this paradigm are 

electroencephalograph signals (EEG), which are easy and noninvasive to acquire. 

Traditionally, the combination of a feature extractor and a classifier has been used to process 

these signals and recognize the MI task, getting an acceptable level of performance. More 

recently, convolutional neural networks (CNNs), which are a combination of these two types 

of algorithms, have been used to process EEG signals, getting similar levels of performance 

while being simpler than other machine learning (ML) algorithms. An example of this is 

EEGNet, a compact CNN architecture robust enough to learn a wide variety of interpretable 

features over a range of BCI tasks, with better generalization across paradigms than other 

reference algorithms. 

Besides, when one thinks of the design of widely used BCI, the processing algorithm is not 

the only point that must be taken into account, but also the hardware support that is going to 

run it. One possibility is to upload the EEG signals to the cloud and use the strong 

computational resources there to identify the MI task, but this would require an always-

available Internet connection for the user, that would increase the battery consumption and 

could jeopardize their privacy, since their thoughts are being processed in a Big Tech 

datacenter. One solution to remove the Internet connection from the equation is to use edge 

computing, meaning that all the computational load is processed on the user’s device. Of 

course, this will require of stronger hardware in computational terms. There are a lot of 

hardware possibilities where the CNNs can be run, from general purpose and parallel-limited 

central processing units (CPUs) to super-efficient application-specific integrated circuits 
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(ASICs). Field-programmable gate arrays (FPGAs) are in a middle point, meeting a good 

balance between efficiency and flexibility. The Xilinx Zynq 7000 System on-Chip (SoC) series 

– such as the 7010 that’s used in the Red Pitaya STEMLab 125-10 –stand out in particular, 

since they have both a CPU and FPGA, enabling the acceleration of functions on-chip while 

being easy to interface with, as they support light-weight operating systems such as the Red 

Pitaya OS. 

In this project an EEGNet-based model has been adapted to work with the Physionet’s Motor 

Movement/Imagery dataset. Once trained, it has been implemented in the FPGA of the Xilinx 

Zynq 7010 SoC that is part of the STEMLab 125-10 board. To fit the model inside this 

compact FPGA, two strategies have been followed: (1) data reduction techniques have been 

applied to reduce the shape of the dataset elements, thus reducing the neural architecture’s 

size; and (2) fixed-point datatypes have been selected to represent the neural network 

values: inputs, parameters, feature maps and outputs. 

Dataset 
The Physionet Motor Movement/Imagery dataset was selected to train the models. This 

dataset includes 64-channel EEG recordings of 105 valid subjects performing four different 

motor imagery tasks: 

• Open and close the left fist (L) 

• Open and close the right fist (R) 

• Rest (0) 

• Open and close both feet (F) 

For comparison purposes, the commonly used criteria of 2-, 3- and 4-imagined-classes (L/R, 

R/L/0 and R/L/0/F, respectively) are used for this dataset. A total of 21 samples per class 

and subject are selected from the whole dataset, which are extracted in the stimuli window 

(Figure 1), where the subject must perform the corresponding motor imagery task for 4 

seconds.  

The input data shape is the number of channels, 𝑁𝑐ℎ𝑎𝑛𝑠, times the number of frames, 𝑓𝑛, 

which is computed by multiplying the time in seconds, 𝑇, with the sampling frequency, 𝑓𝑠 =

160 Hz, as described in the equations below: 

𝐼𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 = 𝑁𝑐ℎ𝑎𝑛𝑠 × 𝑓𝑛

𝑓𝑛 = 𝑇 ∗ 𝑓𝑠
} ⇒ 𝐼𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 = 𝑁𝑐ℎ𝑎𝑛𝑠 × (𝑡 ∗ 𝑓𝑠) 

The dependency between the input size and the model’s parameters determines the 

computational resource limitations for the FPGA implementation. To solve this issue, the data 

extraction strategies presented in this EEGNet MCU implementation work, were considered: 

 

Figure 1:  Trial timing scheme. Each stimulus is 4 s long and is 2 s apart from the previous 

and next one. 
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• Time window shortening: Since the stimulus first appears at 𝑇 = 0 s, (see Figure 1) 

the most relevant data should be concentrated close to the left side of the stimulus 

window. Removing data from the right side of the window should not result in any 

loss in accuracy, while significantly reducing the number of frames, and thus the input 

size. This is the 𝑇 parameter, that will be either 1, 2 or 3 seconds. 

• Data downsampling: As mentioned above, the EEG recordings were sampled at 

160 Hz, thus limiting the valuable information up to 80 Hz due to the Nyquist 

frequency. Physiology studies that have related motor movement and imagery to 

brain waves show that these tasks are related to the µ and β waves, which range 

between 7.5 Hz and 30 Hz. Bearing this in mind, if a downsampling factor of two is 

applied (𝑑𝑠 = 2), the bandwidth is shortened to 40 Hz, with the µ and β waves still 

within it, while the number of frames is halved, 
𝑇𝑓𝑠

𝑑𝑠
=

𝑇𝑓𝑠

2
. On the other hand, when 

𝑑𝑠 = 3 the maximum frequency is 26.67 Hz, slightly cropping higher frequencies of 

the β wave and reducing the number of frames by two thirds. In this manner, the input 

data and network parameters are reduced using downsampling.  

Data augmentation is another possible advantage of using a downsampling 

technique. The commonly discarded frames are added to the data (Figure 2), 

multiplying the amount of patterns by the factor 𝑑𝑠. 

• Channel reduction: As previously mentioned, the dataset provides 64-channel EEG 

signals. A channel reduction analysis aims to evaluate the model performance at 

different conditions. Moreover, it emulates other electrode configurations from other 

EEG acquisition systems. Three subsets of the initial 64 electrodes are set to be 

explored: 38, 19 and 8 (Figure 3). The 19-electrode scenario corresponds to the 10-

20 international system for EEG electrode placement, while the 8 electrodes’ 

positions are those used with Bitbrain’s minimal EEG caps. The 38-electrode 

scenario represents a middle point between the 64- and 19-electrode configurations. 

Model Architecture 
As mentioned in the introduction, the model architecture is based on EEGNet, a CNN model 

that has demonstrated its versatility in various EEG-based paradigms while also being 

compact enough to explore its implementation in hardware. 

To meet our goals, the model’s architecture was fitted to the dataset according to the original 

EEGNet paper. However, three main changes were made to this architecture. First, the 

Exponential Linear Unit (ELU) was replaced by the Leaky Rectified Linear Unit (LeakyReLU), 

since this is easier to implement in hardware while maintaining similar accuracy levels. The 

alpha factor of the LeakyReLU was then set to stepped values, with the highest one at the 

Figure 2:  Data augmentation technique used when the signal is 

downsampled. In this case ds=3, so each third subset of frames is 

treated as a sample. 

Figure 3:  Electrode map and its 

subdivisions. Image taken from 

here. 
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first occurrence of the activation, 0.6, 0.5 and 0.4, respectively. Lastly, Dropout and Batch 

Normalization were removed. Moreover, the model must be adapted to the aforementioned 

data reduction methods. The resulting architecture combining the original EEGNet model, 

the proposed changes and the data extraction methods is shown in Figure 4, with more 

details in Table I. 

Table I:  Model architecture description 

Layer # filters Padding Kernel # params Activation Output shape 

Input - - - - - (𝑁𝑐ℎ𝑎𝑛 , 𝑓𝑠𝑇/𝑑𝑠, 1) 

Conv2D 4 same (1, 𝑓𝑠/2𝑑𝑠) 2𝑓𝑠/𝑑𝑠 LReLU (0.6) (𝑁𝑐ℎ𝑎𝑛 , 𝑓𝑠𝑇/𝑑𝑠, 4) 

DepthConv2D 2·4 valid (𝑁𝑐ℎ𝑎𝑛 , 1) 8𝑁𝑐ℎ𝑎𝑛  LReLU (0.5) (1, 𝑓𝑠𝑇/𝑑𝑠, 8) 

AvgPool2D - valid (1, 6/𝑑𝑠) - - (1, 𝑓𝑠𝑇/6, 8) 

SepConv2D 8 same (1, 16) 192 LReLU (0.4) (1, 𝑓𝑠𝑇/6, 8) 

AvgPool2D - valid (1, 8) - - (1, 𝑓𝑠𝑇/48, 8) 

Flatten - - - - - 𝑓𝑠𝑇/6 

Dense 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 - - 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑓𝑠𝑇/6 Softmax 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

 

Model training 
Due to the inter- and intra-subject 

variance in the EEG signals for the same 

MI task, the training strategy followed in 

this work was split into two stages. First, 

a global model was trained over the 

entire dataset, and then transfer learning 

was applied to train subject-specific (SS) 

models using the global one as the 

starting-point. 

The cross-validation technique used for 

evaluation was the same as the one 

presented in this work for the Physionet 

Motor Movement/Imagery dataset. This 

technique uses 5-fold cross-validation for 

 

Figure 5:  Cross-validation method. In the global case, 5-fold 

cross-validation is done over the subjects, so each fold is 

validated using an iterating fifth of them, in this case the subjects 

85-105. Once the global model is validated, the subject-specific 

models are trained using the global fold in which the subject that 

was used as validation appears. For the SS case, 4-fold cross 

validation is applied. Image taken from here. 

 

 

Figure 4:  EEGNet-based model architecture visualization. 
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the global model, using one fifth of the subjects to validate each model, and 4-fold cross-

validation for the subject-specific models, i.e., using one fourth of the trails of each subject to 

validate each SS model. A visualization of this cross-validation method is shown in Figure 5. 

The global model was implemented in Keras over Tensorflow 2.4.1 and trained for 100 

epochs using a batch size of 16. Adam optimizer was selected, with a learning rate scheduler 

that decreases the learning rate by steps to 10-2, 2·10-3, 2·10-4, 4·10-6 and 4·10-8 at epochs 

0, 20, 40, 60 and 80, respectively. The SS-TL models were trained for 5 more epochs using 

the same fine-tuned hyperparameters except for the learning rate, which was fixed at 10-2. 

An AMD Ryzen 5 3400G CPU at 3.7 GHz computer with a NVIDIA Quadro P2000 GPU with 

CUDA 11.2 was used for these simulations.  

The results obtained for 2-, 3- and 4-classes classification tasks compared with those in other 

works using the Physionet Motor Movement/Imagery dataset can be found in Table II. 

Table II:  Validation accuracy compared with other works 

Nclasses 
Dose et al. Wang et al. 

This work 

ds = 1 ds = 2 
Global SS-TL Global SS-TL Global SS-TL Global SS-TL 

2 80.38 86.49 82.43 84.32 83.15 87.46 82.52 93.10 
3 69.82 76.25 75.07 80.07 75.74 83.26 75.34 93.21 
4 58.59 68.51 65.07 70.83 65.75 74.31 65.56 89.23 

 

In addition, the results for different data-reduction scenarios are available in Table III. 

Table III:  Data reduction effects on the validation accuracy 

𝑇 (𝑠) 𝑑𝑠 Validation accuracy (%)   𝑁𝑐ℎ𝑎𝑛  Validation accuracy (%) 

3 

1 65.75   38 64.60 

2 65.56   19 62.09 

3 64.50   8 58.19 

2 

1 64.65   

All data is calculated for the 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4 task on 

the global model. The validation accuracy of the 

T and ds table was calculated using  

𝑁𝑐ℎ𝑎𝑛 = 64, while 𝑇 = 3 and 𝑑𝑠 = 2 was used in 

the 𝑁𝑐ℎ𝑎𝑛  table. 

2 64.23  

3 63.96  

1 

1 64.35  

2 63.47  

3 62.62  
 

The code for the data preparation, architecture definition and training process can be found 

in the training notebook of the project’s GitHub repo. 

FPGA implementation 
As noted above, the targeted FPGA is the XC7Z010, the PL of the Xilinx’s Zynq 7010 SoC 

present on the Red Pitaya STEMLab 125-10, which has 28 K programmable logic cells, 

17.6 K look-up tables (LUTs), 35.2 K flip-flops (FF), 2.1 Mb of BRAM (block random-access 

memory) and 80 DSP (digital signal processing) slices of 18×25 MAC (multiplier-

accumulator). This SoC includes a processing system based on a dual-core ARM Cortex-A9 

with a maximum frequency of 667 MHz. 

An algorithmic description of the implemented neural network was developed in C++, which 

can be found in the project’s GitHub repo. This code was used as the source for a Vivado 

High-level Synthesis project. To reduce the resource’s footprint, the design uses fixed-point 

datatypes to represent the network parameters, specifically <16,8>, meaning that 16 bits are 

used to represent numerical values, from which 8 correspond to the integer part 
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representation. Due to the quantization effect present 

in the port of both the model parameters and the input 

data, from the Keras floating point representation into 

the selected fixed-point, a fall in accuracy is expected 

when implementing the model in HLS. 

To measure this accuracy loss, an HLS C simulation 

was run using the testbench that loads the model 

parameters and evaluates the validation set for each 

fold. The mean validation accuracy of the global model 

fold drops approximately 0.1 % (Figure 6).  

Once the HLS model was validated, it was 

synthetized. A pipeline directive was introduced in the 

inner loops of each layer, which significantly reduces the inference time (latency) of the FPGA 

implemented network from seconds to tens of milliseconds. Additionally, the interface 

directives were included to set all the ports as AXILite slave interfaces, enabling the 

communication with the Zynq Processing System through the AXI interface when loaded in 

the FPGA. The average time latency and the FPGA resource consumption for different data 

reduction scenarios are shown in Table IV. 

Table IV:  Data reduction effects on the time latency and the resources consumption 

𝑇 (𝑠) 𝑑𝑠 Lat. (ms) FF (%) LUTs (%) BRAM (%) DSPs (%) 

3 

1 87.50 29.12 28.01 152.50 18.75 

2 25.42 28.97 28.05 84.17 17.50 

3 12.43 28.40 27.55 84.17 17.50 

2 

1 58.33 29.22 27.98 150.83 18.75 

2 16.95 29.07 28.02 82.50 17.50 

3 8.29 28.39 27.49 48.33 17.50 

1 

1 29.17  28.97 27.98 82.50 17.50 

2 8.48 28.86 27.85 48.33 17.50 

3 4.14 28.16 27.38 31.67 17.50 

 

The 𝑑𝑠 = 1  and 𝑇 = {2,3} implementations (marked in red) were automatically discarded 

since they overconsume the available BRAM in the XC7Z010. However, for the rest of the 

scenarios the model fits in the targeted FPGA. For this reason, the 𝑇 = 3, 𝑑𝑠 = 2 model was 

selected to be implemented in the FPGA, since it gets the best accuracy while maintaining 

an acceptable inference time of 25 ms. 

With the aim of automating the C simulation and synthesis operations, a small Python library 

which makes these processes callable from a higher-level language was developed, 

facilitating the exploration of all the data-reduction scenarios. Basically, it uses templates of 

the source files and the testbench that can be configured from Python to create them with 

the desired dataset parameters (𝑇, 𝑑𝑠, 𝑁𝑐ℎ𝑎𝑛𝑠 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠). Additionally, since the validation 

of the dataset in the HLS simulated model takes too long, the developed Python code 

launches each fold separately as a background process, reducing the simulation time by a 

factor of 5. The use of these functions for simulating and synthetizing is included in the 

implementation notebook. 

The Vivado IP integrator was used to implement the Vivado HLS-exported IP of the model, 

as shown in Figure 7. Using the block autoconnection feature of Vivado makes the integration 

of the IP containing the neural model into a block design with the Zynq Processing System 

straightforward. 

 

Figure 6:  Validation accuracy for each fold when 

the model is virtualized in Keras (orange) and its 

implementation simulated in HLS (blue). 
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Once the IP is integrated, the bitstream is generated and loaded into the Red Pitaya together 

with the model parameters and the dataset through SFTP (Secured File Transfer Protocol). 

Red Pitaya automatically launches a Jupyter Notebooks server when booted, in which we 

are going to run the usage notebook. Table V contains the validation accuracy for the global 

model with 𝑇 = 3 s, 𝑑𝑠 = 2, 𝑁𝑐ℎ𝑎𝑛𝑠 = 64 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4 implemented in Keras, HLS and the 

FPGA. 

Table V:  Fall in accuracy in HLS and FPGA. 

Keras HLS FPGA 

65.56% 65.45% 62.86% 

Conclusion and Future Work 
An EEG-based FPGA implementation of a QCNN for MI task classification was presented in 

this project. The compact network was correctly trained and tested using the Keras platform, 

and implemented using the Vivado HLS+Vivado IP integrator workflow on the Xilinx Zynq 

7010. Additionally, a custom driver has been developed to control the model implemented 

on the FPGA from the SoC’s CPU. To fit the model in the FPGA, two methods have been 

used: the reduction of the dataset and the representation of the neural network with 16-bit 

fixed-point values. 

The subject specific models achieve an average validation accuracy of 93.10 %, 93.21 % 

and 89.23 % for 2-, 3- and 4-class MI task classification, respectively. Moreover, the FPGA 

implementation has proven to have a minimum loss of 2.7 % of accuracy for our trained 

model, with expected response (latency) times of less than 30 ms. 

Finally, the development of the complete FPGA-based BCI prototype is part of the second 

stage of this project. The neural model implemented into the FPGA will be used as the kernel 

of a low-cost real-time device that infers the patterns from the multiplexed EEG channel 

electronic signals connected to the coaxial input of the Red Pitaya development board. 

 

Figure 7:  Block design that integrates the model IP (MIBCI_QCNN). 

https://github.com/eneriz-daniel/MIBCI-QCNNs/blob/master/usage.ipynb
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