
BCI with the Red Pitaya
STEMLab 125-10

Overview
One of the most popular brain-computer interface (BCI) paradigms is the recognition of motor

imagery tasks using electroencephalograph signals (EEG). One of the recently presented

convolutional neural networks (CNNs) specifically designed to process EEG data is the

EEGNet, that gets good performance across different BCI paradigms while being compact

enough to explore its implementation on edge devices. In this work, an EEGNet-based

architecture has been implemented on the FPGA of the Xilinx Zynq 7010 system on-chip

(SoC), the core of the Red Pitaya STEMLab 125-10. To achieve this, two optimization

strategies have been explored: some data reduction techniques to control the size of the

model, and the fixed-point representation of the network.

Introduction
Brain-computer interfaces (BCIs) aim to enable direct communication between humans and

computers by reading and identifying signals from the brain and acting on them. Their main

inspiration comes from the medical field, but they also have applicability in entertainment and

gaming systems, home automation or human enhancement.

Among all the BCI paradigms proposed throughout the field, we decided to focus on motor

imagery (MI), a paradigm that consists of recognizing signals related to imagined

movements. The commonly used brain-related signals for this paradigm are

electroencephalograph signals (EEG), which are easy and noninvasive to acquire.

Traditionally, the combination of a feature extractor and a classifier has been used to process

these signals and recognize the MI task, getting an acceptable level of performance. More

recently, convolutional neural networks (CNNs), which are a combination of these two types

of algorithms, have been used to process EEG signals, getting similar levels of performance

while being simpler than other machine learning (ML) algorithms. An example of this is

EEGNet, a compact CNN architecture robust enough to learn a wide variety of interpretable

features over a range of BCI tasks, with better generalization across paradigms than other

reference algorithms.

Besides, when one thinks of the design of widely used BCI, the processing algorithm is not

the only point that must be taken into account, but also the hardware support that is going to

run it. One possibility is to upload the EEG signals to the cloud and use the strong

computational resources there to identify the MI task, but this would require an always-

available Internet connection for the user, that would increase the battery consumption and

could jeopardize their privacy, since their thoughts are being processed in a Big Tech

datacenter. One solution to remove the Internet connection from the equation is to use edge

computing, meaning that all the computational load is processed on the user’s device. Of

course, this will require of stronger hardware in computational terms. There are a lot of

hardware possibilities where the CNNs can be run, from general purpose and parallel-limited

central processing units (CPUs) to super-efficient application-specific integrated circuits

https://en.wikipedia.org/wiki/Brain%E2%80%93computer_interface
https://en.wikipedia.org/wiki/Motor_imagery
https://en.wikipedia.org/wiki/Motor_imagery
https://en.wikipedia.org/wiki/Electroencephalography
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://arxiv.org/abs/1611.08024

(ASICs). Field-programmable gate arrays (FPGAs) are in a middle point, meeting a good

balance between efficiency and flexibility. The Xilinx Zynq 7000 System on-Chip (SoC) series

– such as the 7010 that’s used in the Red Pitaya STEMLab 125-10 –stand out in particular,

since they have both a CPU and FPGA, enabling the acceleration of functions on-chip while

being easy to interface with, as they support light-weight operating systems such as the Red

Pitaya OS.

In this project an EEGNet-based model has been adapted to work with the Physionet’s Motor

Movement/Imagery dataset. Once trained, it has been implemented in the FPGA of the Xilinx

Zynq 7010 SoC that is part of the STEMLab 125-10 board. To fit the model inside this

compact FPGA, two strategies have been followed: (1) data reduction techniques have been

applied to reduce the shape of the dataset elements, thus reducing the neural architecture’s

size; and (2) fixed-point datatypes have been selected to represent the neural network

values: inputs, parameters, feature maps and outputs.

Dataset
The Physionet Motor Movement/Imagery dataset was selected to train the models. This

dataset includes 64-channel EEG recordings of 105 valid subjects performing four different

motor imagery tasks:

• Open and close the left fist (L)

• Open and close the right fist (R)

• Rest (0)

• Open and close both feet (F)

For comparison purposes, the commonly used criteria of 2-, 3- and 4-imagined-classes (L/R,

R/L/0 and R/L/0/F, respectively) are used for this dataset. A total of 21 samples per class

and subject are selected from the whole dataset, which are extracted in the stimuli window

(Figure 1), where the subject must perform the corresponding motor imagery task for 4

seconds.

The input data shape is the number of channels, 𝑁𝑐ℎ𝑎𝑛𝑠, times the number of frames, 𝑓𝑛,

which is computed by multiplying the time in seconds, 𝑇, with the sampling frequency, 𝑓𝑠 =

160 Hz, as described in the equations below:

𝐼𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 = 𝑁𝑐ℎ𝑎𝑛𝑠 × 𝑓𝑛

𝑓𝑛 = 𝑇 ∗ 𝑓𝑠
} ⇒ 𝐼𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 = 𝑁𝑐ℎ𝑎𝑛𝑠 × (𝑡 ∗ 𝑓𝑠)

The dependency between the input size and the model’s parameters determines the

computational resource limitations for the FPGA implementation. To solve this issue, the data

extraction strategies presented in this EEGNet MCU implementation work, were considered:

Figure 1: Trial timing scheme. Each stimulus is 4 s long and is 2 s apart from the previous

and next one.

https://physionet.org/content/eegmmidb/1.0.0/
https://arxiv.org/abs/2004.00077

• Time window shortening: Since the stimulus first appears at 𝑇 = 0 s, (see Figure 1)

the most relevant data should be concentrated close to the left side of the stimulus

window. Removing data from the right side of the window should not result in any

loss in accuracy, while significantly reducing the number of frames, and thus the input

size. This is the 𝑇 parameter, that will be either 1, 2 or 3 seconds.

• Data downsampling: As mentioned above, the EEG recordings were sampled at

160 Hz, thus limiting the valuable information up to 80 Hz due to the Nyquist

frequency. Physiology studies that have related motor movement and imagery to

brain waves show that these tasks are related to the µ and β waves, which range

between 7.5 Hz and 30 Hz. Bearing this in mind, if a downsampling factor of two is

applied (𝑑𝑠 = 2), the bandwidth is shortened to 40 Hz, with the µ and β waves still

within it, while the number of frames is halved,
𝑇𝑓𝑠

𝑑𝑠
=

𝑇𝑓𝑠

2
. On the other hand, when

𝑑𝑠 = 3 the maximum frequency is 26.67 Hz, slightly cropping higher frequencies of

the β wave and reducing the number of frames by two thirds. In this manner, the input

data and network parameters are reduced using downsampling.

Data augmentation is another possible advantage of using a downsampling

technique. The commonly discarded frames are added to the data (Figure 2),

multiplying the amount of patterns by the factor 𝑑𝑠.

• Channel reduction: As previously mentioned, the dataset provides 64-channel EEG

signals. A channel reduction analysis aims to evaluate the model performance at

different conditions. Moreover, it emulates other electrode configurations from other

EEG acquisition systems. Three subsets of the initial 64 electrodes are set to be

explored: 38, 19 and 8 (Figure 3). The 19-electrode scenario corresponds to the 10-

20 international system for EEG electrode placement, while the 8 electrodes’

positions are those used with Bitbrain’s minimal EEG caps. The 38-electrode

scenario represents a middle point between the 64- and 19-electrode configurations.

Model Architecture
As mentioned in the introduction, the model architecture is based on EEGNet, a CNN model

that has demonstrated its versatility in various EEG-based paradigms while also being

compact enough to explore its implementation in hardware.

To meet our goals, the model’s architecture was fitted to the dataset according to the original

EEGNet paper. However, three main changes were made to this architecture. First, the

Exponential Linear Unit (ELU) was replaced by the Leaky Rectified Linear Unit (LeakyReLU),

since this is easier to implement in hardware while maintaining similar accuracy levels. The

alpha factor of the LeakyReLU was then set to stepped values, with the highest one at the

Figure 2: Data augmentation technique used when the signal is

downsampled. In this case ds=3, so each third subset of frames is

treated as a sample.

Figure 3: Electrode map and its

subdivisions. Image taken from

here.

https://en.wikipedia.org/wiki/Nyquist_frequency#:~:text=In%20signal%20processing%2C%20the%20Nyquist,rate%20(samples%20per%20second).
https://en.wikipedia.org/wiki/Nyquist_frequency#:~:text=In%20signal%20processing%2C%20the%20Nyquist,rate%20(samples%20per%20second).
https://en.wikipedia.org/wiki/Mu_wave
https://en.wikipedia.org/wiki/Beta_wave
https://arxiv.org/pdf/2004.00077.pdf
https://arxiv.org/pdf/2004.00077.pdf

first occurrence of the activation, 0.6, 0.5 and 0.4, respectively. Lastly, Dropout and Batch

Normalization were removed. Moreover, the model must be adapted to the aforementioned

data reduction methods. The resulting architecture combining the original EEGNet model,

the proposed changes and the data extraction methods is shown in Figure 4, with more

details in Table I.

Table I: Model architecture description

Layer # filters Padding Kernel # params Activation Output shape

Input - - - - - (𝑁𝑐ℎ𝑎𝑛 , 𝑓𝑠𝑇/𝑑𝑠, 1)

Conv2D 4 same (1, 𝑓𝑠/2𝑑𝑠) 2𝑓𝑠/𝑑𝑠 LReLU (0.6) (𝑁𝑐ℎ𝑎𝑛 , 𝑓𝑠𝑇/𝑑𝑠, 4)

DepthConv2D 2·4 valid (𝑁𝑐ℎ𝑎𝑛 , 1) 8𝑁𝑐ℎ𝑎𝑛 LReLU (0.5) (1, 𝑓𝑠𝑇/𝑑𝑠, 8)

AvgPool2D - valid (1, 6/𝑑𝑠) - - (1, 𝑓𝑠𝑇/6, 8)

SepConv2D 8 same (1, 16) 192 LReLU (0.4) (1, 𝑓𝑠𝑇/6, 8)

AvgPool2D - valid (1, 8) - - (1, 𝑓𝑠𝑇/48, 8)

Flatten - - - - - 𝑓𝑠𝑇/6

Dense 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 - - 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑓𝑠𝑇/6 Softmax 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

Model training
Due to the inter- and intra-subject

variance in the EEG signals for the same

MI task, the training strategy followed in

this work was split into two stages. First,

a global model was trained over the

entire dataset, and then transfer learning

was applied to train subject-specific (SS)

models using the global one as the

starting-point.

The cross-validation technique used for

evaluation was the same as the one

presented in this work for the Physionet

Motor Movement/Imagery dataset. This

technique uses 5-fold cross-validation for

Figure 5: Cross-validation method. In the global case, 5-fold

cross-validation is done over the subjects, so each fold is

validated using an iterating fifth of them, in this case the subjects

85-105. Once the global model is validated, the subject-specific

models are trained using the global fold in which the subject that

was used as validation appears. For the SS case, 4-fold cross

validation is applied. Image taken from here.

Figure 4: EEGNet-based model architecture visualization.

https://backend.orbit.dtu.dk/ws/portalfiles/portal/152316980/1_s2.0_S0957417418305359_main.pdf
https://arxiv.org/abs/2004.00077
https://arxiv.org/abs/2004.00077

the global model, using one fifth of the subjects to validate each model, and 4-fold cross-

validation for the subject-specific models, i.e., using one fourth of the trails of each subject to

validate each SS model. A visualization of this cross-validation method is shown in Figure 5.

The global model was implemented in Keras over Tensorflow 2.4.1 and trained for 100

epochs using a batch size of 16. Adam optimizer was selected, with a learning rate scheduler

that decreases the learning rate by steps to 10-2, 2·10-3, 2·10-4, 4·10-6 and 4·10-8 at epochs

0, 20, 40, 60 and 80, respectively. The SS-TL models were trained for 5 more epochs using

the same fine-tuned hyperparameters except for the learning rate, which was fixed at 10-2.

An AMD Ryzen 5 3400G CPU at 3.7 GHz computer with a NVIDIA Quadro P2000 GPU with

CUDA 11.2 was used for these simulations.

The results obtained for 2-, 3- and 4-classes classification tasks compared with those in other

works using the Physionet Motor Movement/Imagery dataset can be found in Table II.

Table II: Validation accuracy compared with other works

Nclasses
Dose et al. Wang et al.

This work

ds = 1 ds = 2
Global SS-TL Global SS-TL Global SS-TL Global SS-TL

2 80.38 86.49 82.43 84.32 83.15 87.46 82.52 93.10
3 69.82 76.25 75.07 80.07 75.74 83.26 75.34 93.21
4 58.59 68.51 65.07 70.83 65.75 74.31 65.56 89.23

In addition, the results for different data-reduction scenarios are available in Table III.

Table III: Data reduction effects on the validation accuracy

𝑇 (𝑠) 𝑑𝑠 Validation accuracy (%) 𝑁𝑐ℎ𝑎𝑛 Validation accuracy (%)

3

1 65.75 38 64.60

2 65.56 19 62.09

3 64.50 8 58.19

2

1 64.65

All data is calculated for the 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4 task on

the global model. The validation accuracy of the

T and ds table was calculated using

𝑁𝑐ℎ𝑎𝑛 = 64, while 𝑇 = 3 and 𝑑𝑠 = 2 was used in

the 𝑁𝑐ℎ𝑎𝑛 table.

2 64.23

3 63.96

1

1 64.35

2 63.47

3 62.62

The code for the data preparation, architecture definition and training process can be found

in the training notebook of the project’s GitHub repo.

FPGA implementation
As noted above, the targeted FPGA is the XC7Z010, the PL of the Xilinx’s Zynq 7010 SoC

present on the Red Pitaya STEMLab 125-10, which has 28 K programmable logic cells,

17.6 K look-up tables (LUTs), 35.2 K flip-flops (FF), 2.1 Mb of BRAM (block random-access

memory) and 80 DSP (digital signal processing) slices of 18×25 MAC (multiplier-

accumulator). This SoC includes a processing system based on a dual-core ARM Cortex-A9

with a maximum frequency of 667 MHz.

An algorithmic description of the implemented neural network was developed in C++, which

can be found in the project’s GitHub repo. This code was used as the source for a Vivado

High-level Synthesis project. To reduce the resource’s footprint, the design uses fixed-point

datatypes to represent the network parameters, specifically <16,8>, meaning that 16 bits are

used to represent numerical values, from which 8 correspond to the integer part

https://www.sciencedirect.com/science/article/abs/pii/S0957417418305359?via%3Dihub
https://arxiv.org/abs/2004.00077
https://github.com/eneriz-daniel/MIBCI-QCNNs/blob/master/training.ipynb
https://github.com/eneriz-daniel/MIBCI-QCNNs/blob/master/MIBCI-QCNN.cpp

representation. Due to the quantization effect present

in the port of both the model parameters and the input

data, from the Keras floating point representation into

the selected fixed-point, a fall in accuracy is expected

when implementing the model in HLS.

To measure this accuracy loss, an HLS C simulation

was run using the testbench that loads the model

parameters and evaluates the validation set for each

fold. The mean validation accuracy of the global model

fold drops approximately 0.1 % (Figure 6).

Once the HLS model was validated, it was

synthetized. A pipeline directive was introduced in the

inner loops of each layer, which significantly reduces the inference time (latency) of the FPGA

implemented network from seconds to tens of milliseconds. Additionally, the interface

directives were included to set all the ports as AXILite slave interfaces, enabling the

communication with the Zynq Processing System through the AXI interface when loaded in

the FPGA. The average time latency and the FPGA resource consumption for different data

reduction scenarios are shown in Table IV.

Table IV: Data reduction effects on the time latency and the resources consumption

𝑇 (𝑠) 𝑑𝑠 Lat. (ms) FF (%) LUTs (%) BRAM (%) DSPs (%)

3

1 87.50 29.12 28.01 152.50 18.75

2 25.42 28.97 28.05 84.17 17.50

3 12.43 28.40 27.55 84.17 17.50

2

1 58.33 29.22 27.98 150.83 18.75

2 16.95 29.07 28.02 82.50 17.50

3 8.29 28.39 27.49 48.33 17.50

1

1 29.17 28.97 27.98 82.50 17.50

2 8.48 28.86 27.85 48.33 17.50

3 4.14 28.16 27.38 31.67 17.50

The 𝑑𝑠 = 1 and 𝑇 = {2,3} implementations (marked in red) were automatically discarded

since they overconsume the available BRAM in the XC7Z010. However, for the rest of the

scenarios the model fits in the targeted FPGA. For this reason, the 𝑇 = 3, 𝑑𝑠 = 2 model was

selected to be implemented in the FPGA, since it gets the best accuracy while maintaining

an acceptable inference time of 25 ms.

With the aim of automating the C simulation and synthesis operations, a small Python library

which makes these processes callable from a higher-level language was developed,

facilitating the exploration of all the data-reduction scenarios. Basically, it uses templates of

the source files and the testbench that can be configured from Python to create them with

the desired dataset parameters (𝑇, 𝑑𝑠, 𝑁𝑐ℎ𝑎𝑛𝑠 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠). Additionally, since the validation

of the dataset in the HLS simulated model takes too long, the developed Python code

launches each fold separately as a background process, reducing the simulation time by a

factor of 5. The use of these functions for simulating and synthetizing is included in the

implementation notebook.

The Vivado IP integrator was used to implement the Vivado HLS-exported IP of the model,

as shown in Figure 7. Using the block autoconnection feature of Vivado makes the integration

of the IP containing the neural model into a block design with the Zynq Processing System

straightforward.

Figure 6: Validation accuracy for each fold when

the model is virtualized in Keras (orange) and its

implementation simulated in HLS (blue).

https://github.com/eneriz-daniel/MIBCI-QCNNs/blob/master/MIBCI-QCNN-tb.cpp
https://github.com/eneriz-daniel/MIBCI-QCNNs/blob/master/implementation.ipynb

Once the IP is integrated, the bitstream is generated and loaded into the Red Pitaya together

with the model parameters and the dataset through SFTP (Secured File Transfer Protocol).

Red Pitaya automatically launches a Jupyter Notebooks server when booted, in which we

are going to run the usage notebook. Table V contains the validation accuracy for the global

model with 𝑇 = 3 s, 𝑑𝑠 = 2, 𝑁𝑐ℎ𝑎𝑛𝑠 = 64 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4 implemented in Keras, HLS and the

FPGA.

Table V: Fall in accuracy in HLS and FPGA.

Keras HLS FPGA

65.56% 65.45% 62.86%

Conclusion and Future Work
An EEG-based FPGA implementation of a QCNN for MI task classification was presented in

this project. The compact network was correctly trained and tested using the Keras platform,

and implemented using the Vivado HLS+Vivado IP integrator workflow on the Xilinx Zynq

7010. Additionally, a custom driver has been developed to control the model implemented

on the FPGA from the SoC’s CPU. To fit the model in the FPGA, two methods have been

used: the reduction of the dataset and the representation of the neural network with 16-bit

fixed-point values.

The subject specific models achieve an average validation accuracy of 93.10 %, 93.21 %

and 89.23 % for 2-, 3- and 4-class MI task classification, respectively. Moreover, the FPGA

implementation has proven to have a minimum loss of 2.7 % of accuracy for our trained

model, with expected response (latency) times of less than 30 ms.

Finally, the development of the complete FPGA-based BCI prototype is part of the second

stage of this project. The neural model implemented into the FPGA will be used as the kernel

of a low-cost real-time device that infers the patterns from the multiplexed EEG channel

electronic signals connected to the coaxial input of the Red Pitaya development board.

Figure 7: Block design that integrates the model IP (MIBCI_QCNN).

https://github.com/eneriz-daniel/MIBCI-QCNNs/blob/master/usage.ipynb

	Overview
	Introduction
	Dataset
	Model Architecture
	Model training
	FPGA implementation
	Conclusion and Future Work

